Fifth-order generalized Heisenberg supermagnetic models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More on Generalized Heisenberg Ferromagnet Models

We generalize the integrable Heisenberg ferromagnet model according to each Hermitian symmetric spaces and address various new aspects of the generalized model. Using the first order formalism of generalized spins which are defined on the coadjoint orbits of arbitrary groups, we construct a Lagrangian of the generalized model from which we obtain the Hamiltonian structure explicitly in the case...

متن کامل

Soliton Perturbation Theory for the Generalized Fifth-Order Nonlinear Equation

The adiabatic parameter dynamics of 1-soliton solution of the generalized fifth-order nonlinear equation is obtained by virtue of the soliton perturbation theory. The adiabatic change of soliton velocity is also obtained in this paper.

متن کامل

Self - Dual Chern - Simons Solitons and Generalized Heisenberg Ferromagnet Models

We consider the (2+1)-dimensional gauged Heisenberg ferromagnet model coupled with the Chern-Simons gauge fields. Self-dual Chern-Simons solitons, the static zero energy solution saturating Bogomol’nyi bounds, are shown to exist when the generalized spin variable is valued in the Hermitian symmetric spaces G/H . By gauging the maximal torus subgroup of H , we obtain self-dual solitons which sat...

متن کامل

Rigorous results for a hierarchy of generalized Heisenberg models.

The Lieb-Schultz-Mattis theorem is extended to generalized Heisenberg models related to unexceptional Lie algebras. It is shown that there are no energy gaps above the ground states for SO(4), Sp(2), and SU(4) Heisenberg models; but gaps are suspected to occur in SO(5) and SO(6) models. The nondegenerate ground state for these models is rigorously proven.

متن کامل

A Stability Analysis of Fifth-Order Water Wave Models

We study the stability of traveling wave solutions to a fifth-order water wave model. By solving a constrained minimization problem we show that “ground state” traveling wave solutions exist. Their stability is shown to be determined by the convexity or concavity of a function d(c) of the wave speed c. The analysis makes frequent use of the variational properties of the traveling waves.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chaos, Solitons & Fractals

سال: 2020

ISSN: 0960-0779

DOI: 10.1016/j.chaos.2020.109644